A Gilbert cell multiplier is a circuit that takes two inputs as differential currents and produces a differential current that is proportional to the product of the two inputs
Let X and Y be arbitrary values between 1 and -1. Let I
x and I
y be arbitrary non-zero currents. The combined emitter current of the left differential pair, \(I_{le}=I_y\left(1+Y\right)\), and the combined emitter current of the right differential pair, \(I_{re}=I_y\left(1-Y\right)\). Let V
1 be the collector voltage of the leftmost transistor and V
2 be the collector voltage of the rightmost transistor. Let I
s be the saturation current of the base-emitter junction. Let V
t be the thermal voltage, about 0.025865 volts.
Part 1
Consider the leftmost transistor. Note that its base and collector are connected together. Recall that the base current
is \(I_s\left(\frac{e^{V_1/V_t}-1}{\beta}\right)\). Therefore the total current flowing through through the transistor is
\(I_s\left(\frac{\beta+1}{\beta}\left(e^{V_1/V_t}-1\right)\right)\)
Part 2
\(I_{le}=I_y\left(1+Y\right)\) and \(I_{re}=I_y\left(1-Y\right)\), therefore:
$$ I_{le} + I_{re} = I_y\left(1+Y\right) + I_y\left(1-Y\right) $$
$$ I_{le} + I_{re} = I_y\left(1+Y+1-Y\right) $$
$$ I_{le} + I_{re} = 2I_y $$
Part 3
Consider the left differential pair. The combined emitter current is \(I_{le}\). Let \(I_{llc}\) be the collector current
of the left side, and \(I_{lrc}\) be the collector current of the right side.
$$ I_{llc} - I_{lrc} = \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_{le}\beta}{\beta+1}\right) $$
Since \(I_{llc} + I_{lrc} = \frac{I_{le}\beta}{\beta+1}\), \(I_{llc} = \frac{I_{le}\beta}{2\left(\beta+1\right)} + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_{le}\beta}{2\left(\beta+1\right)}\right)\) and \(I_{lrc} = \frac{I_{le}\beta}{2\left(\beta+1\right)} - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_{le}\beta}{2\left(\beta+1\right)}\right)\).
The base current is equal to the collector current divided by the gain. Therefore:
$$ I_{llb} =
\frac{I_{le}}{2\left(\beta+1\right)} + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_{le}}{2\left(\beta+1\right)}\right) =
\frac{I_{le}}{2\left(\beta+1\right)}\left(1 + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right)$$
$$ I_{lrb} =
\frac{I_{le}}{2\left(\beta+1\right)} - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_{le}}{2\left(\beta+1\right)}\right) =
\frac{I_{le}}{2\left(\beta+1\right)}\left(1 - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right)$$
$$ I_{rlb} =
\frac{I_{re}}{2\left(\beta+1\right)} + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_{re}}{2\left(\beta+1\right)}\right) =
\frac{I_{re}}{2\left(\beta+1\right)}\left(1 + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) $$
$$ I_{rrb} =
\frac{I_{re}}{2\left(\beta+1\right)} - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_{re}}{2\left(\beta+1\right)}\right) =
\frac{I_{re}}{2\left(\beta+1\right)}\left(1 - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) $$
By KCL,
$$ I_x\left(1+X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) + I_{llb} + I_{rlb} $$
$$ I_x\left(1+X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) +
\frac{I_{le}}{2\left(\beta+1\right)}\left(1 + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) +
\frac{I_{re}}{2\left(\beta+1\right)}\left(1 + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right)$$
$$ I_x\left(1+X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) +
\frac{I_{le} + I_{re}}{2\left(\beta+1\right)}\left(1 + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) $$
$$ I_x\left(1+X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) +
\frac{I_y}{\left(\beta+1\right)}\left(1 + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) $$
Similarly, for the other side:
$$ I_x\left(1-X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) + I_{lrb} + I_{rrb} $$
$$ I_x\left(1-X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) +
\frac{I_{le}}{2\left(\beta+1\right)}\left(1 - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) +
\frac{I_{re}}{2\left(\beta+1\right)}\left(1 - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right)$$
$$ I_x\left(1-X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) +
\frac{I_{le} + I_{re}}{2\left(\beta+1\right)}\left(1 - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) $$
$$ I_x\left(1-X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) +
\frac{I_y}{\left(\beta+1\right)}\left(1 - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) $$
Now, this equation for \(I_x\left(1+X\right)\) is solved for \(V_2\)
$$ I_x\left(1+X\right) - \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) =
\frac{I_y}{\left(\beta+1\right)}\left(1 + \tanh\left(\frac{V_1-V_2}{2V_t}\right)\right) $$
$$ \frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right) =
1 + \tanh\left(\frac{V_1-V_2}{2V_t}\right) $$
$$ \frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)-1 = \tanh\left(\frac{V_1-V_2}{2V_t}\right) $$
(this result will be important later)
$$ V_2 = V_1-2V_t\operatorname{artanh}\left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)-1\right) $$
Now we can use this to solve for \(V_1\):
$$ I_x\left(1-X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_2/V_t}-1\right) + \left(1-\tanh\left(\frac{V_1-V_2}{2V_t}\right)\right)\left(\frac{I_y}{\beta+1}\right) $$
$$ I_x\left(1-X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_2/V_t}-1\right) + \left(1-\left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)-1\right)\right)\left(\frac{I_y}{\beta+1}\right) $$
$$ I_x\left(1-X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_2/V_t}-1\right) + \left(2-\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)\right) \left(\frac{I_y}{\beta+1}\right) $$
$$ I_x\left(1-X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_2/V_t}-1\right) + \frac{2I_y}{\beta+1} - I_x\left(1+x\right) + \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right) $$
$$ I_x\left(1-X\right) + I_x\left(1+X\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_2/V_t} + e^{V_1/V_t} - 2\right) + \frac{2I_y}{\beta+1} $$
$$ 2I_x = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_2/V_t\right) + \exp\left(V_1/V_t\right) - 2\right) + \frac{2I_y}{\beta+1} $$
$$ 2I_x = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t - 2\operatorname{artanh}\left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)-1\right)\right) + \exp\left(V_1/V_t\right) - 2\right) + \frac{2I_y}{\beta+1} $$
$$ 2I_x = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right)\exp\left( - 2\operatorname{artanh}\left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)-1\right)\right) + \exp\left(V_1/V_t\right) - 2\right) + \frac{2I_y}{\beta+1} $$
Let \(u = \frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)-1\)
$$ 2I_x = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right)\exp\left( - 2\operatorname{artanh}\left(u\right)\right) + \exp\left(V_1/V_t\right) - 2\right) + \frac{2I_y}{\beta+1} $$
\(\operatorname{artanh}\left(x\right)\) is defined to be \(\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)\). Thus \(e^{-2\operatorname{artanh}\left(x\right)} = \frac{1-x}{1+x}\)
$$ 2I_x = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right) \left(\frac{1-u}{1+u}\right) + \exp\left(V_1/V_t\right) - 2\right) + \frac{2I_y}{\beta+1} $$
$$ 2I_x = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right) \left(\frac{1-u}{1+u}+1\right) - 2\right) + \frac{2I_y}{\beta+1} $$
$$ 2I_x = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right) \left(\frac{2}{1+u}\right) - 2\right) + \frac{2I_y}{\beta+1} $$
$$ I_x = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right) \left(\frac{1}{1+u}\right) - 1\right) + \frac{I_y}{\beta+1} $$
$$ I_x\left(1+u\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right) - \left(1+u\right)\right) + \frac{I_y\left(1+u\right)}{\beta+1} $$
Expand u:
$$ I_x\left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right) - \left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)\right)\right) + \frac{I_y\left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)\right)}{\beta+1} $$
$$ \left(\frac{I_x\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(\exp\left(V_1/V_t\right) - \left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)\right)\right) + \left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right) $$
$$ \frac{\left(\beta+1\right)I_x^2\left(1+X\right)}{I_y} - \frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta}\left(e^{V_1/V_t}-1\right) = \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}\right) - \frac{I_x I_s\left(\beta+1\right)^2\left(1+X\right)}{I_y \beta} + \frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2}\left(e^{V_1/V_t}-1\right) + I_x\left(1+X\right) - \frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t} - 1\right) $$
$$ \frac{\left(\beta+1\right)I_x^2\left(1+X\right)}{I_y} -
\frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta}\left(e^{V_1/V_t}\right) + \frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta} =
\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}\right) -
\frac{I_x I_s\left(\beta+1\right)^2\left(1+X\right)}{I_y \beta} +
\frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2}\left(e^{V_1/V_t}\right) - \frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2} +
I_x\left(1+X\right) -
\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}\right) + \frac{I_s\left(\beta+1\right)}{\beta} $$
$$ \frac{\left(\beta+1\right)I_x^2\left(1+X\right)}{I_y} +
\frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta} -
\frac{I_s\left(\beta+1\right)}{\beta} -
I_x\left(1+X\right) +
\frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2} +
\frac{I_x I_s\left(\beta+1\right)^2\left(1+X\right)}{I_y \beta} =
\left(e^{V_1/V_t}\right)\left(
\frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta} +
\frac{I_s\left(\beta+1\right)}{\beta} +
\frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2} -
\frac{I_s\left(\beta+1\right)}{\beta}
\right) $$
$$ I_x\left(1+X\right)\left(
\frac{I_x\left(\beta+1\right)}{I_y} +
\frac{I_s\left(\beta+1\right)^2}{I_y \beta} -
1
\right) +
\frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta} -
\frac{I_s\left(\beta+1\right)}{\beta} +
\frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2} =
\left(e^{V_1/V_t}\right)\left(
\frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta} +
\frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2}
\right) $$
$$ \frac{
I_x\left(1+X\right)\left(
\frac{I_x\left(\beta+1\right)}{I_y} +
\frac{I_s\left(\beta+1\right)^2}{I_y \beta} -
1
\right) +
\frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta} -
\frac{I_s\left(\beta+1\right)}{\beta} +
\frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2}
}{
\frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta} +
\frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2}
} = e^{V_1/V_t} $$
$$ \frac{
I_x\left(1+X\right)\left(
\frac{I_x\left(\beta+1\right)}{I_y} +
\frac{I_s\left(\beta+1\right)^2}{I_y \beta} -
1
\right) -
\frac{I_s\left(\beta+1\right)}{\beta}
}{
\frac{I_x I_s\left(\beta+1\right)^2}{I_y \beta} +
\frac{I_s^2\left(\beta+1\right)^3}{I_y\beta ^2}
} = e^{V_1/V_t} - 1 $$
$$ \frac{
I_x\left(1+X\right)\left(
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2 -
I_y\beta
\right) -
I_y I_s\left(\beta+1\right)
}{
I_x I_s\left(\beta+1\right)^2 +
\frac{I_s^2\left(\beta+1\right)^3}{\beta}
} = e^{V_1/V_t} - 1 $$
Part 4
Find the output voltage given V
1, V
2, and I
y
Note that the two differential pairs are wired in reverse parallel. Therefore, the currents subtract.
$$ I_{out} = \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_y\left(1+Y\right)\beta}{\beta+1}\right) - \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_y\left(1-Y\right)\beta}{\beta+1}\right) $$
$$ I_{out} = \tanh\left(\frac{V_1-V_2}{2V_t}\right)\left(\frac{I_y\beta}{\beta+1}\right)\left(2Y\right) $$
$$ I_{out} = \left(\frac{\left(\beta+1\right)}{I_y}\left(I_x\left(1+X\right)-\frac{I_s\left(\beta+1\right)}{\beta}\left(e^{V_1/V_t}-1\right)\right)-1\right) \left(\frac{I_y\beta}{\beta+1}\right)\left(2Y\right) $$
$$ I_{out} = 2Y\left(
\left(\beta I_x\left(1+X\right)-I_s\left(\beta+1\right)\left(e^{V_1/V_t}-1\right)\right) - \frac{I_y\beta}{\beta+1}
\right) $$
$$ I_{out} = 2Y\left(\beta I_x\left(1+X\right)-I_s\left(\beta+1\right)\left(
\frac{
I_x\left(1+X\right)\left(
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2 -
I_y\beta
\right) -
I_y I_s\left(\beta+1\right)
}{
I_x I_s\left(\beta+1\right)^2 +
\frac{I_s^2\left(\beta+1\right)^3}{\beta}
}
\right) - \frac{I_y\beta}{\beta+1}\right) $$
$$ I_{out} = 2Y\left(\beta I_x\left(1+X\right)-\left(
\frac{
I_x\left(1+X\right)\left(
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2 -
I_y\beta
\right) -
I_y I_s\left(\beta+1\right)
}{
I_x\left(\beta+1\right) +
\frac{I_s\left(\beta+1\right)^2}{\beta}
}
\right) - \frac{I_y\beta}{\beta+1}\right) $$
$$ I_{out} = 2Y\left(\beta I_x\left(1+X\right)-\left(
\frac{
I_x\left(1+X\right)\left(
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2 -
I_y\beta
\right) -
I_y I_s\left(\beta+1\right)
}{\left(\beta+1\right)\left(
I_x +
\frac{I_s\left(\beta+1\right)}{\beta}
\right)}
\right) - \frac{I_y\beta\left(I_x + \frac{I_s\left(\beta+1\right)}{\beta}\right)}{\left(\beta+1\right)\left(I_x + \frac{I_s\left(\beta+1\right)}{\beta}\right)}\right) $$
$$ I_{out} = 2Y\left(\beta I_x\left(1+X\right)-\left(
\frac{
I_x\left(1+X\right)\left(
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2 -
I_y\beta
\right) -
I_y I_s\left(\beta+1\right)
}{\left(\beta+1\right)\left(
I_x +
\frac{I_s\left(\beta+1\right)}{\beta}
\right)}
\right) - \frac{I_x I_y\beta + I_y I_s\left(\beta+1\right)}{\left(\beta+1\right)\left(I_x + \frac{I_s\left(\beta+1\right)}{\beta}\right)}\right) $$
$$ I_{out} = 2Y\left(\beta I_x\left(1+X\right)-\left(
\frac{
I_x\left(1+X\right)\left(
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2 -
I_y\beta
\right)
}{\left(\beta+1\right)\left(
I_x +
\frac{I_s\left(\beta+1\right)}{\beta}
\right)}
\right) - \frac{I_x I_y\beta}{\left(\beta+1\right)\left(I_x + \frac{I_s\left(\beta+1\right)}{\beta}\right)}\right) $$
$$ I_{out} = 2Y\left(\beta I_x\left(1+X\right)-\beta I_x\left(1+X\right)\left(
\frac{
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2 -
I_y\beta
}{\left(\beta+1\right)\left(
\beta I_x +
I_s\left(\beta+1\right)
\right)}
\right) - \frac{I_x I_y\beta ^2}{\left(\beta+1\right)\left(I_x\beta + I_s\left(\beta+1\right)\right)}\right) $$
$$ I_{out} = 2Y\left(\beta I_x\left(1+X\right)\left(1-
\frac{
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2 -
I_y\beta
}{
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2
}
\right) - \frac{I_x I_y\beta ^2}{I_x\beta\left(\beta+1\right) + I_s\left(\beta+1\right)^2}\right) $$
$$ I_{out} = 2Y\left(\beta I_x\left(1+X\right)\left(
\frac{
I_y\beta
}{
I_x\beta\left(\beta+1\right) +
I_s\left(\beta+1\right)^2
}
\right) - \frac{I_x I_y\beta ^2}{I_x\beta\left(\beta+1\right) + I_s\left(\beta+1\right)^2}\right) $$
$$ I_{out} = 2Y\left(\beta I_x X\left(\frac{I_y\beta}{I_x\beta\left(\beta+1\right) + I_s\left(\beta+1\right)^2}\right) +
\left(\frac{I_x I_y\beta^2}{I_x\beta\left(\beta+1\right) + I_s\left(\beta+1\right)^2}\right) -
\frac{I_x I_y\beta ^2}{I_x\beta\left(\beta+1\right) + I_s\left(\beta+1\right)^2}\right) $$
$$ I_{out} = 2Y\left(\beta I_x X\left(\frac{I_y\beta}{I_x\beta\left(\beta+1\right) + I_s\left(\beta+1\right)^2}\right)\right) $$
$$ I_{out} = \frac{2XYI_xI_y\beta^2}{I_x\beta\left(\beta+1\right) + I_s\left(\beta+1\right)^2} $$
For transistors with a large gain, \(\beta\left(\beta+1\right) \approx \left(\beta+1\right)^2\), and if \(I_x \gg I_s\), then
the second term in the denominator can be ignored with little effect
$$ I_{out} = \frac{2XYI_xI_y\beta^2}{I_x\beta\left(\beta+1\right)} = \frac{2XYI_y\beta}{\beta+1} $$
As one can see in the above equation, the output current is proportional to the product of the input values X and Y.
Comments
Post a Comment